2022-11-26 00:05发布
大数据可以挖掘和分析金融信息深层次的内容,使决策者能够把握重点,引导战略方向。正在来临的大数据时代,金融机构之间的竞争将在网络信息平台上全面展开,说到底就是数
大数据可以挖掘和分析金融信息深层次的内容,使决策者能够把握重点,引导战略方向。
正在来临的大数据时代,金融机构之间的竞争将在网络信息平台上全面展开,说到底就是“数据为王”。谁掌握了数据,谁就拥有风险定价能力,谁就可以获得高额的风险收益,最终赢得竞争优势。
中国金融业正在步入大数据时代的初级阶段。经过多年的发展与积累,目前国内金融机构的数据量已经达到100TB以上级别,并且非结构化数据量正在以更快的速度增长。金融机构行在大数据应用方面具有天然优势:一方面,金融企业在业务开展过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值密度的数据,这些数据在运用专业技术挖掘和分析之后,将产生巨大的商业价值;另一方面,金融机构具有较为充足的预算,可以吸引到实施大数据的高端人才,也有能力采用大数据的最新技术。 总体看,正在兴起的大数据技术将与金融业务呈现快速融合的趋势,给未来金融业的发展带来重要机遇。
首先,大数据推动金融机构的战略转型。在宏观经济结构调整和利率逐步市场化的大环境下,国内金融机构受金融脱媒影响日趋明显,表现为核心负债流失、盈利空间收窄、业务定位亟待调整。业务转型的关键在于创新,但现阶段国内金融机构的创新往往沦为监管套利,没有能够基于挖掘客户内在需求,提供更有价值的服务。而大数据技术正是金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要工具。
其次,大数据技术能够降低金融机构的管理和运行成本。通过大数据应用和分析,金融机构能够准确地定位内部管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,进而降低管理运营成本。此外,大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销效果。
第三,大数据技术有助于降低信息不对称程度,增强风险控制能力。金融机构可以摈弃原来过度依靠客户提供财务报表获取信息的业务方式,转而对其资产价格、账务流水、相关业务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。目前,先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、纳税和信用记录等,对客户行为进行全方位评价,计算动态违约概率和损失率,提高贷款决策的可靠性。
当然,也必须看到,金融机构在与大数据技术融合的过程中也面临诸多挑战和风险。
一是大数据技术应用可能导致金融业竞争版图的重构。信息技术进步、金融业开放以及监管政策变化,客观上降低了行业准入门槛,非金融机构更多地切入金融服务链条,并且利用自身技术优势和监管盲区占得一席之地。而传统金融机构囿于原有的组织架构和管理模式,无法充分发挥自身潜力,反而可能处于竞争下风。
二是大数据的基础设施和安全管理亟待加强。在大数据时代,除传统的账务报表外,金融机构还增加了影像、图片、音频等非结构化数据,传统分析方法已不适应大数据的管理需要,软件和硬件基础设施建设都亟待加强。同时,金融大数据的安全问题日益突出,一旦处理不当可能遭受毁灭性损失。近年来,国内金融企业一直在数据安全方面增加投入,但业务链拉长、云计算模式普及、自身系统复杂度提高等,都进一步增加了大数据的风险隐患。
三是大数据的技术选择存在决策风险。当前,大数据还处于运行模式的探索和成长期,分析型数据库相对于传统的事务型数据库尚不成熟,对于大数据的分析处理仍缺乏高延展性支持,而且它主要仍是面向结构化数据,缺乏对非结构化数据的处理能力。在此情况下,金融企业相关的技术决策就存在选择错误、过于超前或滞后的风险。大数据是一个总体趋势,但过早进行大量投入,选择了不适合自身实际的软硬件,或者过于保守而无所作为都有可能给金融机构的发展带来不利影响。
应该怎样将大数据应用于金融企业呢?
尽管大数据在金融企业的应用刚刚起步,目前影响还比较小,但从发展趋势看,应充分认识大数据带来的深远影响。在制订发展战略时,董事会和管理层不仅要考虑规模、资本、网点、人员、客户等传统要素,还要更加重视对大数据的占有和使用能力,以及互联网、移动通讯、电子渠道等方面的研发能力;要在发展战略中引入和践行大数据的理念和方法,推动决策从“经验依赖”型向“数据依靠”型转化;要保证对大数据的资源投入,把渠道整合、信息网络化、数据挖掘等作为向客户提供金融服务和创新产品的重要基础。
(一)推进金融服务与社交网络的融合
我国金融企业要发展大数据平台,就必须打破传统的数据源边界,注重互联网站、社交媒体等新型数据来源,通过各种渠道获取尽可能多的客户和市场资讯。首先要整合新的客户接触渠道,充分发挥社交网络的作用,增强对客户的了解和互动,树立良好的品牌形象。其次是注重新媒体客服的发展,利用各种聊天工具等网络工具将其打造成为与电话客服并行的服务渠道。三是将企业内部数据和外部社交数据互联,获得更加完整的客户视图,进行更高效的客户关系管理。四是利用社交网络数据和移动数据等进行产品创新和精准营销。五是注重新媒体渠道的舆情监测,在风险事件爆发之前就进行及时有效的处置,将声誉风险降至最低。
(二)处理好与数据服务商的竞争、合作关系
当前各大电商平台上,每天都有大量交易发生,但这些交易的支付结算大多被第三方支付机构垄断,传统金融企业处于支付链末端,从中获取的价值较小。为此,金融机构可考虑自行搭建数据平台,将核心话语权掌握在自己的手中。另一方面,也可以与电信、电商、社交网络等大数据平台开展战略合作,进行数据和信息的交换共享,全面整合客户有效信息,将金融服务与移动网络、电子商务、社交网络等融合起来。从专业分工角度讲,金融机构与数据服务商开展战略合作是比较现实的选择;如果自办电商,没有专业优势,不仅费时费力,还可能丧失市场机遇。(三)增强大数据的核心处理能力
首先是强化大数据的整合能力。这不仅包括金融企业内部的数据整合,更重要的是与大数据链条上其他外部数据的整合。目前,来自各行业、各渠道的数据标准存在差异,要尽快统一标准与格式,以便进行规范化的数据融合,形成完整的客户视图。同时,针对大数据所带来的海量数据要求,还要对传统的数据仓库技术,特别是数据传输方式ETL(提取、转换和加载)进行流程再造。其次是增强数据挖掘与分析能力,要利用大数据专业工具,建立业务逻辑模型,将大量非结构化数据转化成决策支持信息。三是加强对大数据分析结论的解读和应用能力,关键是要打造一支复合型的大数据专业团队,他们不仅要掌握数理建模和数据挖掘的技术,还要具备良好的业务理解力,并能与内部业务条线进行充分地沟通合作。
(四)加大金融创新力度,设立大数据实验室
可以在金融企业内部专门设立大数据创新实验室,统筹业务、管理、科技、统计等方面的人才与资源,建立特殊的管理体制和激励机制。实验室统一负责大数据方案的制定、实验、评价、推广和升级。每次推行大数据方案之前,实验室都应事先进行单元试验、穿行测试、压力测试和返回检验;待测试通过后,对项目的风险收益作出有数据支撑的综合评估。实验室的另一个任务是对“大数据”进行“大分析”,不断优化模型算法。在“方法论上。
(五)加强风险管控,确保大数据安全。
大数据能够在很大程度上缓解信息不对称问题,为金融企业风险管理提供更有效的手段,但如果管理不善,“大数据”本身也可能演化成“大风险”。大数据应用改变了数据安全风险的特征,它不仅需要新的管理方法,还必须纳入到全面风险管理体系,进行统一监控和治理。为了确保大数据的安全,金融机构必须抓住三个关键环节:一是协调大数据链条中的所有机构,共同推动数据安全标准,加强产业自我监督和技术分享;二是加强与监管机构合作交流,借助监管服务的力量,提升自身的大数据安全水准;三是主动与客户在数据安全和数据使用方面加强沟通,提升客户的数据安全意识,形成大数据风险管理的合力效应。
就拿亿信华辰在金融行业的案例看看银行大数据应用国内不少银行已经开始尝试通过大数据来驱动业务运营,如中信银行信用卡中心使用大数据技术实现了实时营销,光大银行建立了社交网络信息数据库,招商银行则利用大数据发展小微贷款。总的来看银行大数据应用可以分为四大方面:1、客户画像客户画像应用主要分为个人客户画像和企业客户画像。个人客户画像包括人口统计学特征、消费能力数据、兴趣数据、风险偏好等;企业客户画像包括企业的生产、流通、运营、财务、销售和客户数据、相关产业链上下游等数据。值得注意的是,银行拥有的客户信息并不全面,基于银行自身拥有的数据有时候难以得出理想的结果甚至可能得出错误的结论。比如,如果某位信用卡客户月均刷卡8次,平均每次刷卡金额800元,平均每年打4次客服电话,从未有过投诉,按照传统的数据分析,该客户是一位满意度较高流失风险较低的客户。但如果看到该客户的微博,得到的真实情况是:工资卡和信用卡不在同一家银行,还款不方便,好几次打客服电话没接通,客户多次在微博上抱怨,该客户流失风险较高。所以银行不仅仅要考虑银行自身业务所采集到的数据,更应考虑整合外部更多的数据,以扩展对客户的了解。包括:(1)客户在社交媒体上的行为数据(如光大银行建立了社交网络信息数据库)。通过打通银行内部数据和外部社会化的数据可以获得更为完整的客户拼图,从而进行更为精准的营销和管理;(2)客户在电商网站的交易数据,如建设银行则将自己的电子商务平台和信贷业务结合起来,阿里金融为阿里巴巴用户提供无抵押贷款,用户只需要凭借过去的信用即可;(3)企业客户的产业链上下游数据。如果银行掌握了企业所在的产业链上下游的数据,可以更好掌握企业的外部环境发展情况,从而可以预测企业未来的状况;(4)其他有利于扩展银行对客户兴趣爱好的数据,如网络广告界目前正在兴起的DMP数据平台的互联网用户行为数据。2、精准营销在客户画像的基础上银行可以有效的开展精准营销,包括:(1)实时营销。实时营销是根据客户的实时状态来进行营销,比如客户当时的所在地、客户最近一次消费等信息来有针对地进行营销(某客户采用信用卡采购孕妇用品,可以通过建模推测怀孕的概率并推荐孕妇类喜欢的业务);或者将改变生活状态的事件(换工作、改变婚姻状况、置居等)视为营销机会;(2)交叉营销。即不同业务或产品的交叉推荐,如招商银行可以根据客户交易记录分析,有效地识别小微企业客户,然后用远程银行来实施交叉销售;(3)个性化推荐。银行可以根据客户的喜欢进行服务或者银行产品的个性化推荐,如根据客户的年龄、资产规模、理财偏好等,对客户群进行精准定位,分析出其潜在金融服务需求,进而有针对性的营销推广;(4)客户生命周期管理。客户生命周期管理包括新客户获取、客户防流失和客户赢回等。如招商银行通过构建客户流失预警模型,对流失率等级前20%的客户发售高收益理财产品予以挽留,使得金卡和金葵花卡客户流失率分别降低了15个和7个百分点。3、风险管理与风险控制在风险管理和控制方面包括中小企业贷款风险评估和欺诈交易识别等手段(1)中小企业贷款风险评估。银行可通过企业的产、流通、销售、财务等相关信息结合大数据挖掘方法进行贷款风险分析,量化企业的信用额度,更有效的开展中小企业贷款。(2)实时欺诈交易识别和反洗钱分析。银行可以利用持卡人基本信息、卡基本信息、交易历史、客户历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎(如从一个不经常出现的国家为一个特有用户转账或从一个不熟悉的位置进行在线交易)进行实时的交易反欺诈分析。如IBM金融犯罪管理解决方案帮助银行利用大数据有效地预防与管理金融犯罪,摩根大通银行则利用大数据技术追踪盗取客户账号或侵入自动柜员机(ATM)系统的罪犯。4、运营优化(1)市场和渠道分析优化。通过大数据,银行可以监控不同市场推广渠道尤其是网络渠道推广的质量,从而进行合作渠道的调整和优化。同时,也可以分析哪些渠道更适合推广哪类银行产品或者服务,从而进行渠道推广策略的优化。(2)产品和服务优化:银行可以将客户行为转化为信息流,并从中分析客户的个性特征和风险偏好,更深层次地理解客户的习惯,智能化分析和预测客户需求,从而进行产品创新和服务优化。如兴业银行目前对大数据进行初步分析,通过对还款数据挖掘比较区分优质客户,根据客户还款数额的差别,提供差异化的金融产品和服务方式。(3)舆情分析:银行可以通过爬虫技术,抓取社区、论坛和微博上关于银行以及银行产品和服务的相关信息,并通过自然语言处理技术进行正负面判断,尤其是及时掌握银行以及银行产品和服务的负面信息,及时发现和处理问题;对于正面信息,可以加以总结并继续强化。同时,银行也可以抓取同行业的银行正负面信息,及时了解同行做的好的方面,以作为自身业务优化的借鉴。
最多设置5个标签!
大数据可以挖掘和分析金融信息深层次的内容,使决策者能够把握重点,引导战略方向。
正在来临的大数据时代,金融机构之间的竞争将在网络信息平台上全面展开,说到底就是“数据为王”。谁掌握了数据,谁就拥有风险定价能力,谁就可以获得高额的风险收益,最终赢得竞争优势。
中国金融业正在步入大数据时代的初级阶段。经过多年的发展与积累,目前国内金融机构的数据量已经达到100TB以上级别,并且非结构化数据量正在以更快的速度增长。金融机构行在大数据应用方面具有天然优势:一方面,金融企业在业务开展过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值密度的数据,这些数据在运用专业技术挖掘和分析之后,将产生巨大的商业价值;另一方面,金融机构具有较为充足的预算,可以吸引到实施大数据的高端人才,也有能力采用大数据的最新技术。
总体看,正在兴起的大数据技术将与金融业务呈现快速融合的趋势,给未来金融业的发展带来重要机遇。
首先,大数据推动金融机构的战略转型。在宏观经济结构调整和利率逐步市场化的大环境下,国内金融机构受金融脱媒影响日趋明显,表现为核心负债流失、盈利空间收窄、业务定位亟待调整。业务转型的关键在于创新,但现阶段国内金融机构的创新往往沦为监管套利,没有能够基于挖掘客户内在需求,提供更有价值的服务。而大数据技术正是金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要工具。
其次,大数据技术能够降低金融机构的管理和运行成本。通过大数据应用和分析,金融机构能够准确地定位内部管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,进而降低管理运营成本。此外,大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销效果。
第三,大数据技术有助于降低信息不对称程度,增强风险控制能力。金融机构可以摈弃原来过度依靠客户提供财务报表获取信息的业务方式,转而对其资产价格、账务流水、相关业务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。目前,先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、纳税和信用记录等,对客户行为进行全方位评价,计算动态违约概率和损失率,提高贷款决策的可靠性。
当然,也必须看到,金融机构在与大数据技术融合的过程中也面临诸多挑战和风险。
一是大数据技术应用可能导致金融业竞争版图的重构。信息技术进步、金融业开放以及监管政策变化,客观上降低了行业准入门槛,非金融机构更多地切入金融服务链条,并且利用自身技术优势和监管盲区占得一席之地。而传统金融机构囿于原有的组织架构和管理模式,无法充分发挥自身潜力,反而可能处于竞争下风。
二是大数据的基础设施和安全管理亟待加强。在大数据时代,除传统的账务报表外,金融机构还增加了影像、图片、音频等非结构化数据,传统分析方法已不适应大数据的管理需要,软件和硬件基础设施建设都亟待加强。同时,金融大数据的安全问题日益突出,一旦处理不当可能遭受毁灭性损失。近年来,国内金融企业一直在数据安全方面增加投入,但业务链拉长、云计算模式普及、自身系统复杂度提高等,都进一步增加了大数据的风险隐患。
三是大数据的技术选择存在决策风险。当前,大数据还处于运行模式的探索和成长期,分析型数据库相对于传统的事务型数据库尚不成熟,对于大数据的分析处理仍缺乏高延展性支持,而且它主要仍是面向结构化数据,缺乏对非结构化数据的处理能力。在此情况下,金融企业相关的技术决策就存在选择错误、过于超前或滞后的风险。大数据是一个总体趋势,但过早进行大量投入,选择了不适合自身实际的软硬件,或者过于保守而无所作为都有可能给金融机构的发展带来不利影响。
应该怎样将大数据应用于金融企业呢?
尽管大数据在金融企业的应用刚刚起步,目前影响还比较小,但从发展趋势看,应充分认识大数据带来的深远影响。在制订发展战略时,董事会和管理层不仅要考虑规模、资本、网点、人员、客户等传统要素,还要更加重视对大数据的占有和使用能力,以及互联网、移动通讯、电子渠道等方面的研发能力;要在发展战略中引入和践行大数据的理念和方法,推动决策从“经验依赖”型向“数据依靠”型转化;要保证对大数据的资源投入,把渠道整合、信息网络化、数据挖掘等作为向客户提供金融服务和创新产品的重要基础。
(一)推进金融服务与社交网络的融合
我国金融企业要发展大数据平台,就必须打破传统的数据源边界,注重互联网站、社交媒体等新型数据来源,通过各种渠道获取尽可能多的客户和市场资讯。首先要整合新的客户接触渠道,充分发挥社交网络的作用,增强对客户的了解和互动,树立良好的品牌形象。其次是注重新媒体客服的发展,利用各种聊天工具等网络工具将其打造成为与电话客服并行的服务渠道。三是将企业内部数据和外部社交数据互联,获得更加完整的客户视图,进行更高效的客户关系管理。四是利用社交网络数据和移动数据等进行产品创新和精准营销。五是注重新媒体渠道的舆情监测,在风险事件爆发之前就进行及时有效的处置,将声誉风险降至最低。
(二)处理好与数据服务商的竞争、合作关系
当前各大电商平台上,每天都有大量交易发生,但这些交易的支付结算大多被第三方支付机构垄断,传统金融企业处于支付链末端,从中获取的价值较小。为此,金融机构可考虑自行搭建数据平台,将核心话语权掌握在自己的手中。另一方面,也可以与电信、电商、社交网络等大数据平台开展战略合作,进行数据和信息的交换共享,全面整合客户有效信息,将金融服务与移动网络、电子商务、社交网络等融合起来。从专业分工角度讲,金融机构与数据服务商开展战略合作是比较现实的选择;如果自办电商,没有专业优势,不仅费时费力,还可能丧失市场机遇。
(三)增强大数据的核心处理能力
首先是强化大数据的整合能力。这不仅包括金融企业内部的数据整合,更重要的是与大数据链条上其他外部数据的整合。目前,来自各行业、各渠道的数据标准存在差异,要尽快统一标准与格式,以便进行规范化的数据融合,形成完整的客户视图。同时,针对大数据所带来的海量数据要求,还要对传统的数据仓库技术,特别是数据传输方式ETL(提取、转换和加载)进行流程再造。其次是增强数据挖掘与分析能力,要利用大数据专业工具,建立业务逻辑模型,将大量非结构化数据转化成决策支持信息。三是加强对大数据分析结论的解读和应用能力,关键是要打造一支复合型的大数据专业团队,他们不仅要掌握数理建模和数据挖掘的技术,还要具备良好的业务理解力,并能与内部业务条线进行充分地沟通合作。
(四)加大金融创新力度,设立大数据实验室
可以在金融企业内部专门设立大数据创新实验室,统筹业务、管理、科技、统计等方面的人才与资源,建立特殊的管理体制和激励机制。实验室统一负责大数据方案的制定、实验、评价、推广和升级。每次推行大数据方案之前,实验室都应事先进行单元试验、穿行测试、压力测试和返回检验;待测试通过后,对项目的风险收益作出有数据支撑的综合评估。实验室的另一个任务是对“大数据”进行“大分析”,不断优化模型算法。在“方法论上。
(五)加强风险管控,确保大数据安全。
大数据能够在很大程度上缓解信息不对称问题,为金融企业风险管理提供更有效的手段,但如果管理不善,“大数据”本身也可能演化成“大风险”。大数据应用改变了数据安全风险的特征,它不仅需要新的管理方法,还必须纳入到全面风险管理体系,进行统一监控和治理。为了确保大数据的安全,金融机构必须抓住三个关键环节:一是协调大数据链条中的所有机构,共同推动数据安全标准,加强产业自我监督和技术分享;二是加强与监管机构合作交流,借助监管服务的力量,提升自身的大数据安全水准;三是主动与客户在数据安全和数据使用方面加强沟通,提升客户的数据安全意识,形成大数据风险管理的合力效应。
就拿亿信华辰在金融行业的案例看看
银行大数据应用
国内不少银行已经开始尝试通过大数据来驱动业务运营,如中信银行信用卡中心使用大数据技术实现了实时营销,光大银行建立了社交网络信息数据库,招商银行则利用大数据发展小微贷款。总的来看银行大数据应用可以分为四大方面:
1、客户画像
客户画像应用主要分为个人客户画像和企业客户画像。个人客户画像包括人口统计学特征、消费能力数据、兴趣数据、风险偏好等;企业客户画像包括企业的生产、流通、运营、财务、销售和客户数据、相关产业链上下游等数据。值得注意的是,银行拥有的客户信息并不全面,基于银行自身拥有的数据有时候难以得出理想的结果甚至可能得出错误的结论。比如,如果某位信用卡客户月均刷卡8次,平均每次刷卡金额800元,平均每年打4次客服电话,从未有过投诉,按照传统的数据分析,该客户是一位满意度较高流失风险较低的客户。但如果看到该客户的微博,得到的真实情况是:工资卡和信用卡不在同一家银行,还款不方便,好几次打客服电话没接通,客户多次在微博上抱怨,该客户流失风险较高。所以银行不仅仅要考虑银行自身业务所采集到的数据,更应考虑整合外部更多的数据,以扩展对客户的了解。包括:
(1)客户在社交媒体上的行为数据(如光大银行建立了社交网络信息数据库)。通过打通银行内部数据和外部社会化的数据可以获得更为完整的客户拼图,从而进行更为精准的营销和管理;
(2)客户在电商网站的交易数据,如建设银行则将自己的电子商务平台和信贷业务结合起来,阿里金融为阿里巴巴用户提供无抵押贷款,用户只需要凭借过去的信用即可;
(3)企业客户的产业链上下游数据。如果银行掌握了企业所在的产业链上下游的数据,可以更好掌握企业的外部环境发展情况,从而可以预测企业未来的状况;
(4)其他有利于扩展银行对客户兴趣爱好的数据,如网络广告界目前正在兴起的DMP数据平台的互联网用户行为数据。
2、精准营销
在客户画像的基础上银行可以有效的开展精准营销,包括:
(1)实时营销。实时营销是根据客户的实时状态来进行营销,比如客户当时的所在地、客户最近一次消费等信息来有针对地进行营销(某客户采用信用卡采购孕妇用品,可以通过建模推测怀孕的概率并推荐孕妇类喜欢的业务);或者将改变生活状态的事件(换工作、改变婚姻状况、置居等)视为营销机会;
(2)交叉营销。即不同业务或产品的交叉推荐,如招商银行可以根据客户交易记录分析,有效地识别小微企业客户,然后用远程银行来实施交叉销售;
(3)个性化推荐。银行可以根据客户的喜欢进行服务或者银行产品的个性化推荐,如根据客户的年龄、资产规模、理财偏好等,对客户群进行精准定位,分析出其潜在金融服务需求,进而有针对性的营销推广;
(4)客户生命周期管理。客户生命周期管理包括新客户获取、客户防流失和客户赢回等。如招商银行通过构建客户流失预警模型,对流失率等级前20%的客户发售高收益理财产品予以挽留,使得金卡和金葵花卡客户流失率分别降低了15个和7个百分点。
3、风险管理与风险控制
在风险管理和控制方面包括中小企业贷款风险评估和欺诈交易识别等手段
(1)中小企业贷款风险评估。银行可通过企业的产、流通、销售、财务等相关信息结合大数据挖掘方法进行贷款风险分析,量化企业的信用额度,更有效的开展中小企业贷款。
(2)实时欺诈交易识别和反洗钱分析。银行可以利用持卡人基本信息、卡基本信息、交易历史、客户历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎(如从一个不经常出现的国家为一个特有用户转账或从一个不熟悉的位置进行在线交易)进行实时的交易反欺诈分析。如IBM金融犯罪管理解决方案帮助银行利用大数据有效地预防与管理金融犯罪,摩根大通银行则利用大数据技术追踪盗取客户账号或侵入自动柜员机(ATM)系统的罪犯。
4、运营优化
(1)市场和渠道分析优化。通过大数据,银行可以监控不同市场推广渠道尤其是网络渠道推广的质量,从而进行合作渠道的调整和优化。同时,也可以分析哪些渠道更适合推广哪类银行产品或者服务,从而进行渠道推广策略的优化。
(2)产品和服务优化:银行可以将客户行为转化为信息流,并从中分析客户的个性特征和风险偏好,更深层次地理解客户的习惯,智能化分析和预测客户需求,从而进行产品创新和服务优化。如兴业银行目前对大数据进行初步分析,通过对还款数据挖掘比较区分优质客户,根据客户还款数额的差别,提供差异化的金融产品和服务方式。
(3)舆情分析:银行可以通过爬虫技术,抓取社区、论坛和微博上关于银行以及银行产品和服务的相关信息,并通过自然语言处理技术进行正负面判断,尤其是及时掌握银行以及银行产品和服务的负面信息,及时发现和处理问题;对于正面信息,可以加以总结并继续强化。同时,银行也可以抓取同行业的银行正负面信息,及时了解同行做的好的方面,以作为自身业务优化的借鉴。
一周热门 更多>