2022-11-27 09:12发布
诚然,任何一门技术都不可能一蹴而就,更不可能一夜成才。这世上,没有什么牛逼的事情是能够速成的,越是专业、越是基层、收益周期越长的技能越是这样,数据分析师也不例外
企业对数据分析师的技能需求可总结如下:
SQL数据库的基本操作,会基本的数据管理
会用Excel/SQL做基本的数据提取、分析和展示
会用脚本语言进行数据分析,Python or R
有获取外部数据的能力加分,如爬虫或熟悉公开数据集
会基本的数据可视化技能,能撰写数据报告
熟悉常用的数据挖掘算法:回归分析、决策树、分类、聚类方法
数据分析的流程,一般可以按“数据获取-数据存储与提取-数据预处理-数据建模与分析-数据可视化”这样的步骤来实施一个数据分析项目。
学习路径如下:
python
SQL语言
python科学计算包:pandas、numpy、scikit-learn
统计学及回归分析方法
数据挖掘基本算法:分类、聚类
数据可视化:seaborn、matplotlib
最多设置5个标签!
企业对数据分析师的技能需求可总结如下:
SQL数据库的基本操作,会基本的数据管理
会用Excel/SQL做基本的数据提取、分析和展示
会用脚本语言进行数据分析,Python or R
有获取外部数据的能力加分,如爬虫或熟悉公开数据集
会基本的数据可视化技能,能撰写数据报告
熟悉常用的数据挖掘算法:回归分析、决策树、分类、聚类方法
数据分析的流程,一般可以按“数据获取-数据存储与提取-数据预处理-数据建模与分析-数据可视化”这样的步骤来实施一个数据分析项目。
学习路径如下:
python
SQL语言
python科学计算包:pandas、numpy、scikit-learn
统计学及回归分析方法
数据挖掘基本算法:分类、聚类
数据可视化:seaborn、matplotlib
一周热门 更多>