2022-11-01 12:05发布
||A-xE|=
2-x 3
2 1-x
=(2-x)(1-x)-6
=x^2-3x-4
=(x+1)(x-4)
所以特征值是-1,4
-1对应的特征向量:
(A+E)x=0的系数矩阵为
3 3
2 2
基础解系为[-1 1]',
所以-1对应的特征向量为[-1 1]'
对应的特征向量:
(A-4E)x=0的系数矩阵为
-2 3
2 -3
基础解系为[3 2]'
所以4对应的特征向量为[3 2]'
扩展资料:
特征向量对应的特征值是它所乘的那个缩放因子。
特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。
线性变换的主特征向量是最大特征值对应的特征向量。
特征值的几何重次是相应特征空间的维数。
有限维向量空间上的一个线性变换的谱是其所有特征值的集合。
参考资料来源:百度百科-特征向量
最多设置5个标签!
||A-xE|=
2-x 3
2 1-x
=(2-x)(1-x)-6
=x^2-3x-4
=(x+1)(x-4)
所以特征值是-1,4
-1对应的特征向量:
(A+E)x=0的系数矩阵为
3 3
2 2
基础解系为[-1 1]',
所以-1对应的特征向量为[-1 1]'
对应的特征向量:
(A-4E)x=0的系数矩阵为
-2 3
2 -3
基础解系为[3 2]'
所以4对应的特征向量为[3 2]'
扩展资料:
特征向量对应的特征值是它所乘的那个缩放因子。
特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。
线性变换的主特征向量是最大特征值对应的特征向量。
特征值的几何重次是相应特征空间的维数。
有限维向量空间上的一个线性变换的谱是其所有特征值的集合。
参考资料来源:百度百科-特征向量
一周热门 更多>