官网
社区
动态
专家
文章
公告
首页
问题库
资讯专栏
标签库
问答话题
问答专家
NEW
发布
提问题
发文章
最大值和最小值怎么求
2022-11-04 14:51
发布
×
打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮
站内问答
/
默认分类
775
2
4
三角函数最值是中学数学的一个重要内容,加强这一内容的教学有助于学生进一步掌握已经学过的三角知识,沟通三角,代数,几何之间的联系,培养学生的思维能力.本文介绍三角
发送
看不清?
2条回答
1楼 · 2022-11-04 15:15.
采纳回答
最大值和最小值如何确定?
加载中...
2楼-- · 2022-11-04 15:08
三角函数最值是中学数学的一个重要内容,加强这一内容的教学有助于学生进一步掌握已经学过的三角知识,沟通三角,代数,几何之间的联系,培养学生的思维能力.
本文介绍三角函数最值问题的一些常见类型和解题方法.
一,利用三角函数的有界性
利用三角函数的有界性如|sinx|≤1,|cosx|≤1来求三角函数的最值.
[例1]a,b是不相等的正数.
求y=的最大值和最小值.
解:y是正值,故使y2达到最大(或最小)的x值也使y达到最大(或最小).
y2=acos2x+bsin2x+2·+asin2x+bcos2x
=a+b+
∵a≠b,(a-b)2>0,0≤sin22x≤1
∴当sin2x=±1时,即x=(k∈Z)时,y有最大值;
当sinx=0时,即x= (k∈Z)时,y有最小值+.
二,利用三角函数的增减性
如果f(x)在[α,β]上是增函数,则f(x)在[α,β]上有最大值f(β),最小值f(α);如果f(x)在[α,β]上是减函数,则f(x)在[α,β]上有最大值f(α),最小值f(β).
[例2]在0≤x≤条件下,求y=cos2x-sinxcosx-3sin2x的最大值和最小值.
解:利用二倍角余弦公式的变形公式,有
y=-2sin2x-3·=2(cos2x-sin2x)-1
=2 (cos2xcos-sin2xsin)-1
=2cos(2x+)-1
∵0≤x≤,≤2x+≤
cos(2x+)在[0,)上是减函数
故当x=0时有最大值
当x=时有最小值-1
cos(2x+)在[,]上是增函数
故当x=时,有最小值-1
当x=时,有最大值-
综上所述,当x=0时,ymax=1
当x=时,ymin=-2-1
三,换元法
利用变量代换,我们可把三角函数最值问题化成代数函数最值问题求解.
[例3]求f(x)=sin4x+2sin3xcosx+sin2xcos2x+2sinxcos3x+cos4x的最大值和最小值.
解:f(x)=(sin2x+cos2x)2-2sin2xcos2x+2sinxcosx(sin2x+cos2x)+sin2xcos2x
=1+2sinxcosx-sin2xcos2x
令t=sin2x
∴-≤t≤ ①
f(t)=1+2t-t2=-(t-1)2+2 ②
在①的范围内求②的最值
当t=,即x=kπ+(k∈Z)时,f(x)max=
当t=-,即x=kπ+(k∈Z)时,f(x)min=-
附:求三角函数最值时应注意的问题
三角函数最值问题是三角函数性质的重要内容之一,也是会考,高考必考内容,在求解中欲达到准确,迅速,除熟练掌握三角公式外,还应注意以下几点:
一,注意sinx,cosx自身的范围
[例1]求函数y=cos2x-3sinx的最大值.
解:y=cos2x-3sinx=-sin2x-3sinx+1=-(sinx+)2+
∵-1≤sinx≤1,
∴当sinx=-1时,ymax=3
说明:解此题易忽视sinx∈[-1,1]这一范围,认为sinx=-时,y有最大值,造成误解.
二,注意条件中角的范围
[例2]已知|x|≤,求函数y=cos2x+sinx的最小值.
解:y=-sin2x+sinx+1=-(sinx-)2+
∵-≤x≤
∴-≤sinx≤
∴当sinx=-时
ymin=-(--)2+=
说明:解此题注意了条件|x|≤,使本题正确求解,否则认为sinx=-1时y有最小值,产生误解.
三,注意题中字母(参数)的讨论
[例3]求函数y=sin2x+acosx+a-(0≤x≤)的最大值.
解:∵y=1-cos2x+acosx+a-=-(cosx-)2++a-
∴当0≤a≤2时,cosx=,ymax=+a-
当a>2时,cosx=1,ymax=a-
当a<0时,cosx=0,ymax=a-
说明:解此题注意到参数a的变化情形,并就其变化讨论求解,否则认为cosx=时,y有最大值会产生误解.
四,注意代换后参数的等价性
[例4]已知y=2sinθcosθ+sinθ-cosθ(0≤θ≤π),求y的最大值,最小值.
解:设t=sinθ-cosθ=sin(θ-)
∴2sinθcosθ=1-t2
∴y=-t2+t+1=-(t-)2+
又∵t=sin(θ-),0≤θ≤π
∴-≤θ-≤
∴-1≤t≤
当t=时,ymax=
当t=-1时,ymin=-1
说明:此题在代换中,据θ范围,确定了参数t∈[-1,],从而正确求解,若忽视这一点,会发生t=时有最大值而无最小值的结论.
1.y=asinx+bcosx型的函数
特点是含有正余弦函数,并且是一次式.解决此类问题的指导思想是把正,余弦函数转化为只有一种三角函数.应用课本中现成的公式即可:y=sin(x+φ),其中tanφ=.
例1.当-≤x≤时,函数f(x)=sinx+cosx的( D )
A,最大值是1,最小值是-1 B,最大值是1,最小值是-
C,最大值是2,最小值是-2 D,最大值是2,最小值是-1
分析:解析式可化为f(x)=2sin(x+),再根据x的范围来解即可.
2.y=asin2x+bsinxcosx+cos2x型的函数
特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解.
例2.求y=sin2x+2sinxcosx+3cos2x的最小值,并求出y取最小值时的x的集合.
解:y=sin2x+2sinxcosx+3cos2x
=(sin2x+cos2x)+sin2x+2cos2x
=1+sin2x+1+cos2x
=2+sin(2x+)
当sin(2x+)=-1时,y取最小值2-,此时x的集合{x|x=kπ-π, k∈Z}.
3.y=asin2x+bcosx+c型的函数
特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解.
例3.求函数y=cos2x-2asinx-a(a为常数)的最大值M.
解:y=1-sin2x-2asinx-a=-(sinx+a)2+a2+1-a,
令sinx=t,则y=-(t+a)2+a2+1-a, (-1≤t≤1)
(1) 若-a1时, 在t=-1时,取最大值M=a.
(2) 若-1≤-a≤1,即-1≤a≤1时,在t=-a时,取最大值M=a2+1-a.
(3) 若-a>1,即a0,
y2=4cos4sin2
=2·cos2·cos2·2sin2
所以0 注:本题的角和函数很难统一,并且还会出现次数太高的问题.
6.含有sinx与cosx的和与积型的函数式.
其特点是含有或经过化简整理后出现sinx+cosx与sinxcosx的式子,处理方式是应用
(sinx+cosx)2=1+2sinxcosx 进行转化,变成二次函数的问题.
例6.求y=2sinxcosx+sinx+cosx的最大值.
解:令sinx+cosx=t (-≤t≤),则1+2sinxcosx=t2,所以2sinxcosx=t2-1,
所以y=t2-1+t=(t+)2-,
根据二次函数的图象,解出y的最大值是1+.
相信通过这一归纳整理,大家对有关三角函数最值的问题就不会陌生了.并且好多其它的求最值的问题可以通过代换转化成三角求最值的问题.希望同学们在做有关的问题时结合上面的知识.
题目有错没有
既然x>0 f(x)<0
怎没有f(1)=2?
加载中...
一周热门
更多
>
如何选择合适的网络环境以避免因网络问题导致的...
准备多台电脑和不同银行卡进行刷水套利操作时,...
在套利机会出现时,如何做到快速下注以避免错过...
如何利用技术工具和数据分析能力来提高刷水套利...
如何确保每个套利账户的独立性,避免使用相同的...
怎样灵活多变地操作不同账户,避免频繁使用同一...
如何设定合理的盈利目标,避免过度追求利润而陷...
怎样合理分配资金,降低整体风险?
如何在多个平台上对同一事件进行相反下注来锁定...
在运用对冲策略时,应注意哪些平台间的赔率差异...
相关问题
相关文章
闸门闸位计
0个评论
量水堰计-流量计
0个评论
磁致伸缩水位计
0个评论
全自动泥沙在线监测仪
0个评论
地表径流量
0个评论
人工模拟降雨
0个评论
摆脱负盈利困境,揭秘对刷的陷阱与陈天道老师的上岸之道
0个评论
《昨日今晨》足球最新资讯,C罗完美融入球队,梅西刷新个人纪录
0个评论
×
关闭
采纳回答
向帮助了您的网友说句感谢的话吧!
非常感谢!
确 认
×
关闭
编辑标签
最多设置5个标签!
保存
关闭
×
关闭
举报内容
检举类型
检举内容
检举用户
检举原因
广告推广
恶意灌水
回答内容与提问无关
抄袭答案
其他
检举说明(必填)
提交
关闭
×
关闭
您已邀请
15
人回答
查看邀请
擅长该话题的人
回答过该话题的人
我关注的人
最大值和最小值如何确定?
本文介绍三角函数最值问题的一些常见类型和解题方法.
一,利用三角函数的有界性
利用三角函数的有界性如|sinx|≤1,|cosx|≤1来求三角函数的最值.
[例1]a,b是不相等的正数.
求y=的最大值和最小值.
解:y是正值,故使y2达到最大(或最小)的x值也使y达到最大(或最小).
y2=acos2x+bsin2x+2·+asin2x+bcos2x
=a+b+
∵a≠b,(a-b)2>0,0≤sin22x≤1
∴当sin2x=±1时,即x=(k∈Z)时,y有最大值;
当sinx=0时,即x= (k∈Z)时,y有最小值+.
二,利用三角函数的增减性
如果f(x)在[α,β]上是增函数,则f(x)在[α,β]上有最大值f(β),最小值f(α);如果f(x)在[α,β]上是减函数,则f(x)在[α,β]上有最大值f(α),最小值f(β).
[例2]在0≤x≤条件下,求y=cos2x-sinxcosx-3sin2x的最大值和最小值.
解:利用二倍角余弦公式的变形公式,有
y=-2sin2x-3·=2(cos2x-sin2x)-1
=2 (cos2xcos-sin2xsin)-1
=2cos(2x+)-1
∵0≤x≤,≤2x+≤
cos(2x+)在[0,)上是减函数
故当x=0时有最大值
当x=时有最小值-1
cos(2x+)在[,]上是增函数
故当x=时,有最小值-1
当x=时,有最大值-
综上所述,当x=0时,ymax=1
当x=时,ymin=-2-1
三,换元法
利用变量代换,我们可把三角函数最值问题化成代数函数最值问题求解.
[例3]求f(x)=sin4x+2sin3xcosx+sin2xcos2x+2sinxcos3x+cos4x的最大值和最小值.
解:f(x)=(sin2x+cos2x)2-2sin2xcos2x+2sinxcosx(sin2x+cos2x)+sin2xcos2x
=1+2sinxcosx-sin2xcos2x
令t=sin2x
∴-≤t≤ ①
f(t)=1+2t-t2=-(t-1)2+2 ②
在①的范围内求②的最值
当t=,即x=kπ+(k∈Z)时,f(x)max=
当t=-,即x=kπ+(k∈Z)时,f(x)min=-
附:求三角函数最值时应注意的问题
三角函数最值问题是三角函数性质的重要内容之一,也是会考,高考必考内容,在求解中欲达到准确,迅速,除熟练掌握三角公式外,还应注意以下几点:
一,注意sinx,cosx自身的范围
[例1]求函数y=cos2x-3sinx的最大值.
解:y=cos2x-3sinx=-sin2x-3sinx+1=-(sinx+)2+
∵-1≤sinx≤1,
∴当sinx=-1时,ymax=3
说明:解此题易忽视sinx∈[-1,1]这一范围,认为sinx=-时,y有最大值,造成误解.
二,注意条件中角的范围
[例2]已知|x|≤,求函数y=cos2x+sinx的最小值.
解:y=-sin2x+sinx+1=-(sinx-)2+
∵-≤x≤
∴-≤sinx≤
∴当sinx=-时
ymin=-(--)2+=
说明:解此题注意了条件|x|≤,使本题正确求解,否则认为sinx=-1时y有最小值,产生误解.
三,注意题中字母(参数)的讨论
[例3]求函数y=sin2x+acosx+a-(0≤x≤)的最大值.
解:∵y=1-cos2x+acosx+a-=-(cosx-)2++a-
∴当0≤a≤2时,cosx=,ymax=+a-
当a>2时,cosx=1,ymax=a-
当a<0时,cosx=0,ymax=a-
说明:解此题注意到参数a的变化情形,并就其变化讨论求解,否则认为cosx=时,y有最大值会产生误解.
四,注意代换后参数的等价性
[例4]已知y=2sinθcosθ+sinθ-cosθ(0≤θ≤π),求y的最大值,最小值.
解:设t=sinθ-cosθ=sin(θ-)
∴2sinθcosθ=1-t2
∴y=-t2+t+1=-(t-)2+
又∵t=sin(θ-),0≤θ≤π
∴-≤θ-≤
∴-1≤t≤
当t=时,ymax=
当t=-1时,ymin=-1
说明:此题在代换中,据θ范围,确定了参数t∈[-1,],从而正确求解,若忽视这一点,会发生t=时有最大值而无最小值的结论.
1.y=asinx+bcosx型的函数
特点是含有正余弦函数,并且是一次式.解决此类问题的指导思想是把正,余弦函数转化为只有一种三角函数.应用课本中现成的公式即可:y=sin(x+φ),其中tanφ=.
例1.当-≤x≤时,函数f(x)=sinx+cosx的( D )
A,最大值是1,最小值是-1 B,最大值是1,最小值是-
C,最大值是2,最小值是-2 D,最大值是2,最小值是-1
分析:解析式可化为f(x)=2sin(x+),再根据x的范围来解即可.
2.y=asin2x+bsinxcosx+cos2x型的函数
特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解.
例2.求y=sin2x+2sinxcosx+3cos2x的最小值,并求出y取最小值时的x的集合.
解:y=sin2x+2sinxcosx+3cos2x
=(sin2x+cos2x)+sin2x+2cos2x
=1+sin2x+1+cos2x
=2+sin(2x+)
当sin(2x+)=-1时,y取最小值2-,此时x的集合{x|x=kπ-π, k∈Z}.
3.y=asin2x+bcosx+c型的函数
特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解.
例3.求函数y=cos2x-2asinx-a(a为常数)的最大值M.
解:y=1-sin2x-2asinx-a=-(sinx+a)2+a2+1-a,
令sinx=t,则y=-(t+a)2+a2+1-a, (-1≤t≤1)
(1) 若-a1时, 在t=-1时,取最大值M=a.
(2) 若-1≤-a≤1,即-1≤a≤1时,在t=-a时,取最大值M=a2+1-a.
(3) 若-a>1,即a0,
y2=4cos4sin2
=2·cos2·cos2·2sin2
所以0 注:本题的角和函数很难统一,并且还会出现次数太高的问题.
6.含有sinx与cosx的和与积型的函数式.
其特点是含有或经过化简整理后出现sinx+cosx与sinxcosx的式子,处理方式是应用
(sinx+cosx)2=1+2sinxcosx 进行转化,变成二次函数的问题.
例6.求y=2sinxcosx+sinx+cosx的最大值.
解:令sinx+cosx=t (-≤t≤),则1+2sinxcosx=t2,所以2sinxcosx=t2-1,
所以y=t2-1+t=(t+)2-,
根据二次函数的图象,解出y的最大值是1+.
相信通过这一归纳整理,大家对有关三角函数最值的问题就不会陌生了.并且好多其它的求最值的问题可以通过代换转化成三角求最值的问题.希望同学们在做有关的问题时结合上面的知识.
题目有错没有
既然x>0 f(x)<0
怎没有f(1)=2?
一周热门 更多>