高中数学中的极值和最值的区别

2022-11-06 03:15发布

两者都是在函数中的概念最值,就是在定义域范围内的X对应的函数值的最大或者最小值,是整个函数的最大或最小值,而极值,是在一定范围内的最大或最小值,其两边的值都比它

两者都是在函数中的概念最值,就是在定义域范围内的X对应的函数值的最大或者最小值,是整个函数的最大或最小值,而极值,是在一定范围内的最大或最小值,其两边的值都比它
4条回答
2022-11-06 04:05 .采纳回答

极大值与极大值点:如果存在点x0的某一邻域(x0-δ,x0+δ),使得对任意x∈(x0-δ,x0+δ),f(x0)>f(x),则称x0为f(x)的极大值点,f(x0)叫做极大值。
极小值与极小值点:如果存在点x0的某个邻域(x0-δ,x0+δ),使得对任意x∈(x0-δ,x0+δ),f(x0)<f(x),则称x0为f(x)的极小值点,f(x0)叫做极小值。
最大值:在f(x)的定义域I上,如果存在x0∈I,使得对任意x∈I,有:f(x0)>f(x),则称x0是f(x)的最大值点,f(x0)称作函数的最大值。
最小值:在f(x)的定义域I上,如果存在x0∈I,使得对任意x∈I,有:f(x0)<f(x),则称x0是f(x)的最小值点,f(x0)称作函数的最小值。本回答被提问者采纳

一周热门 更多>